5.1 - ACKNOWLEDGEMENTS
This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642095 for the OPATHY consortium, by the pre-doctoral research fellowship from Industrial Doctorates of MINECO (Grant 659 DI-17-09134); by the State Plan for Scientific and Technical Research and Innovation 2017-2020 under the Grant TSI-100903-2019-11 from the Secretary of State for Digital Advancement from Ministry of Economic Affairs and Digital Transformation, Spain; and by Expedient IDI-2021-158274-a from Ministry of Science and Innovation, Spain
5.2 - LITERATURE CITED
- Afgan E, Baker D, Batut B, et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46(W1):W537–W544. doi:10.1093/nar/gky379.
- Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. 1990. Basic local alignment search tool. JMolBiol 215: 403-410. doi:10.1016/S0022-2836(05)80360-2.
- Andrews S. 2016. “FastQC A Quality Control Tool for High Throughput Sequence Data.” http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology: 19: 455-477.doi: 0.1089/cmb.2012.0021 .
- Bolger AM., Lohse M, & Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.doi: 10.1093/bioinformatics/btu170.
- Eddy SR. 2011. Accelerated profile HMM searches. PLOS Comp. Biol., 7:e1002195. doi.org/10.1371/journal.pcbi.1002195.
- Gao S, Sung WK, and Nagarajan N. 2011. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. Journal of computational biology. 18: 1681-1691. doi: 10.1089/cmb.2011.0170
- Hannon Lab. 2016. “FASTX Toolkit.” http://hannonlab.cshl.edu/fastx_toolkit/.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736.doi: 10.1101/gr.215087.116
- Luo R, Liu B, Xie Y, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18.doi:10.1186/2047-217X-1-18
- Martin M. 2011. “Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads.” EMBnet.journal 17 (1): 10. doi:10.14806/ej.17.1.200.
- Sahlin K, Vezzi F, Nystedt B, Lundeberg J, and Arvestad L. 2014. BESST - Efficient scaffolding of large fragmented assemblies. BMC Bioinformatics 15:281.doi: 10.1186/1471-2105-15-281.
- Schmieder R and Edwards R. 2011. “Quality Control and Preprocessing of Metagenomic Datasets.” Bioinformatics 27 (6): 863–64. doi:10.1093/bioinformatics/btr026.
- Schulz MH, Zerbino DR, Vingron M and Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086-1092. doi: 10.1093/bioinformatics/bts094.
- Stanke M, Diekhans M, Baertsch R, and Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: 637-644.doi: 10.1093/bioinformatics/btn013.
- Xie Y, Wu G, Tang J, et al. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30: 1660-1666. doi: 10.1093/bioinformatics/btu077.
- Zerbino DR, and Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821-829.doi: 10.1101/gr.074492.107.